Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Neuroscience Bulletin ; (6): 41-56, 2023.
Article in English | WPRIM | ID: wpr-971537

ABSTRACT

Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.


Subject(s)
Animals , Mice , Corticotropin-Releasing Hormone/metabolism , Nucleus Accumbens/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Sleep , Sleep Wake Disorders , Stress, Psychological/complications
2.
Arq. bras. neurocir ; 41(1): 76-84, 07/03/2022.
Article in English | LILACS | ID: biblio-1362091

ABSTRACT

Alcohol abuse has impacts on public health worldwide. Conservative treatment to achieve abstinence consists of detoxification combined with psychotherapy and the use of drugs, but it is estimated that only half of the individuals achieve long-term abstinence with the available treatments. In this sense, neurosurgery appears as a therapeutic proposal. The present study aimed to gather information about the circuitry related to alcohol use disorder (AUD), to describe possible surgical targets, and to establish whether a surgical approach could be a safe and effective treatment option. A systematic review of the literature was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. The 14 selected articles analyze ablative operations, deep brain stimulation (DBS), and a new procedure in which the patient is first submitted to repetitive transcranial magnetic stimulation to evaluate their response, and later an implant is surgically positioned on the evaluated target to obtain more lasting results. The most relevant outcomes were found when the anterior cingulate cortex (ACC) and the nucleus accumbens (NAcc) were used as targets, demonstrating a large reduction in alcohol intake and even its cessation. However, important side effects were observed, such as psychotic symptoms, right frontal venous infarction, seizures after implantation in the ACC and a hypomanic period after DBS in the NAcc, which could be reversed. Due to the lack of studies involving the surgical treatment of AUD, more clinical trials are needed to compare targets, to assess surgical techniques, and to estimate the safety of these techniques.


Subject(s)
Deep Brain Stimulation/methods , Alcoholism/surgery , Transcranial Magnetic Stimulation/methods , Ablation Techniques/rehabilitation , Neurosurgical Procedures/methods , Gyrus Cinguli/surgery , Nucleus Accumbens/surgery
3.
Neuroscience Bulletin ; (6): 263-274, 2022.
Article in English | WPRIM | ID: wpr-929087

ABSTRACT

Protein O-GlcNAcylation is a post-translational modification that links environmental stimuli with changes in intracellular signal pathways, and its disturbance has been found in neurodegenerative diseases and metabolic disorders. However, its role in the mesolimbic dopamine (DA) system, especially in the ventral tegmental area (VTA), needs to be elucidated. Here, we found that injection of Thiamet G, an O-GlcNAcase (OGA) inhibitor, in the VTA and nucleus accumbens (NAc) of mice, facilitated neuronal O-GlcNAcylation and decreased the operant response to sucrose as well as the latency to fall in rotarod test. Mice with DAergic neuron-specific knockout of O-GlcNAc transferase (OGT) displayed severe metabolic abnormalities and died within 4-8 weeks after birth. Furthermore, mice specifically overexpressing OGT in DAergic neurons in the VTA had learning defects in the operant response to sucrose, and impaired motor learning in the rotarod test. Instead, overexpression of OGT in GABAergic neurons in the VTA had no effect on these behaviors. These results suggest that protein O-GlcNAcylation of DAergic neurons in the VTA plays an important role in regulating the response to natural reward and motor learning in mice.


Subject(s)
Animals , Mice , Dopaminergic Neurons/physiology , GABAergic Neurons/physiology , Nucleus Accumbens/metabolism , Reward , Ventral Tegmental Area/metabolism
4.
Neuroscience Bulletin ; (6): 1325-1338, 2021.
Article in English | WPRIM | ID: wpr-922632

ABSTRACT

A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk. In humans, a large proportion of mental disorders are accompanied by impairments in risk avoidance. One of the most important genes involved in mental disorders is disrupted-in-schizophrenia-1 (DISC1), and animal models in which this gene has some level of dysfunction show emotion-related impairments. However, it is not known whether DISC1 mouse models have an impairment in avoiding potential risks. In the present study, we used DISC1-N terminal truncation (DISC1-N


Subject(s)
Animals , Mice , Interneurons/metabolism , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Nucleus Accumbens/metabolism , Parvalbumins/metabolism
5.
Acta Physiologica Sinica ; (6): 828-834, 2021.
Article in Chinese | WPRIM | ID: wpr-921286

ABSTRACT

As a kind of mental illness, depression produces great difficulties in clinical diagnosis and treatment, and has a high disability rate. It is urgent to clarify the mechanism of depression to find potential therapeutic targets and effective clinical treatment methods. As a deacetylase, silent mating type information regulator 2 homolog 1 (SIRT1) is involved in many biological processes such as cell aging, cancer, and cardiovascular disease. In recent years, more and more studies have found that SIRT1 gene plays an important role in the pathogenesis of depression, but the mechanism is still unclear. Therefore, this review mainly summarizes the relevant research progress on the role and mechanism of SIRT1 gene in the hippocampus, prefrontal cortex, amygdala, hypothalamic suprachiasmatic nucleus, and nucleus accumbens in depression, in order to provide new ideas for exploring the mechanism and prevention of depression.


Subject(s)
Humans , Cellular Senescence , Depression/genetics , Hippocampus/metabolism , Nucleus Accumbens , Sirtuin 1/metabolism
6.
Rev. chil. neuro-psiquiatr ; 58(4): 438-446, dic. 2020. ilus, tab
Article in Spanish | LILACS | ID: biblio-1388366

ABSTRACT

INTRODUCCIÓN: La estimulación cerebral profunda (DBS) se ha propuesto como una alternativa terapéutica para el manejo de la depresión resistente al tratamiento (DRT). Sin embargo, existen múltiples blancos para neuroestimulación y se desconoce el punto neuroanatómico óptimo en esta patología. Como parte del circuito de recompensa, el núcleo accumbens (NAc) ha sido estudiado en modelos de depresión y anhedonia. El objetivo de este artículo fue describir la experiencia clínica de la implantación de electrodos bilaterales de DBS en el NAc. REPORTE DE CASOS: Se describe la experiencia en cuatro mujeres entre los 17 a 41 años con DRT. Los casos presentaban antecedente de múltiples hospitalizaciones e intentos de suicidio serios, a pesar de haber sido tratadas previamente con terapia farmacológica, psicoterapia y TECAR (Terapia electroconvulsiva con anestesia y relajación). A los 6 meses del inicio del DBS, se observó una mejoría de los síntomas depresivos en la escala de Hamilton y un incremento en la escala de funcionalidad global. La anhedonia y la abulia persistieron luego de la cirugía, aunque con menor intensidad. CONCLUSIÓN: La DBS del NAc puede ser una estrategia efectiva en el tratamiento de pacientes con DRT, impactando en la funcionalidad y en la disminución del riesgo suicida.


INTRODUCTION: Deep brain stimulation (DBS) has been proposed as a therapeutic alternative for Treatment-resistant depression (TRD) patients. However, there are multiple targets for neurostimulation and the optimal neuroanatomical landmark for this pathology is unknown. Nucleus accumbens (NAc) is a crucial part of the reward circuit and has been studied extensively in models of depression and anhedonia. The objective of this study was to describe our clinical experience with DBS of the NAc patients with TRD. CASE SERIES: It described the experience in four females between 17 and 41 years of age. All cases presented with a history of multiple hospitalizations and serious suicide attempts, despite having been treated with optimal pharmacological regimes, psychotherapy and ECT (Electroconvulsive therapy). Six months after the initiation of DBS, an improvement in the Hamilton Depression Scale and in the Global Assessment of Functioning Scale was observed. Anhedonia and abulia persisted after the surgery, although less severe. CONCLUSION: DBS of NAc seems to offer favorable surgical outcomes in patients with TRD, impacting functionality and suicidal risk.


Subject(s)
Humans , Female , Adolescent , Adult , Young Adult , Deep Brain Stimulation/methods , Depressive Disorder, Treatment-Resistant/therapy , Nucleus Accumbens , Suicide, Attempted/prevention & control
7.
Braz. arch. biol. technol ; 63: e20190297, 2020. graf
Article in English | LILACS | ID: biblio-1132158

ABSTRACT

Abstract The nucleus accumbens shell (NAcSh) plays a role in appetitive and negative motivation with sex differences in responses. NAcSh and its laterality in metabolic and hormonal responses to chronic stress in female rats is evaluated via transient inactivation of this nucleus during stress induction. Animals in the stress groups received consecutive stress for four days and transient inactivation of NAcSh was performed by administrating lidocaine (0.2%) unilaterally or bilaterally in the nucleus for five minutes before electric foot shock induction. After stress termination, food and water intake, latency to eat, plasma glucose, corticosterone, estradiol and progesterone were measured in all groups. Results showed that stress increased food intake and blood glucose level, but there were no change in the latency to eat and the amount of water intake. The right side, the left side, and both sides of NAcSh may be dominant in latency to eat, food intake, and both water intake and plasma glucose level, respectively. Although chronic stress included no changes for corticosterone and progesterone, it increased estradiol level in plasma. Also, bilateral and right sides of NAcSh may have modulatory effects on stress in corticosterone and progesterone, respectively, without affecting estradiol. It can be concluded that the NAc shell plays a pivotal role in metabolic and hormonal responses to chronic stress in a laterality manner in female rats.


Subject(s)
Animals , Female , Rats , Stress, Psychological/physiopathology , Functional Laterality/physiology , Lidocaine/pharmacology , Nucleus Accumbens/physiology , Chronic Disease , Rats, Wistar , Nucleus Accumbens/drug effects
8.
Acta Physiologica Sinica ; (6): 255-261, 2020.
Article in Chinese | WPRIM | ID: wpr-827061

ABSTRACT

Preclinical studies suggest that the GABA receptor is a potential target for treatment of substance use disorders. Baclofen (BLF), a prototypical GABA receptor agonist, is the only specific GABA receptor agonist available for application in clinical addiction treatment. The nucleus accumbens shell (AcbSh) is a key node in the circuit that controls reward-directed behavior. However, the relationship between GABA receptors in the AcbSh and memory reconsolidation was unclear. The aim of this study was to investigate the effect of intra-AcbSh injection of BLF on the reconsolidation of morphine reward memory. Male C57BL/6J mice were used to establish morphine conditioned place preference (CPP) model and carry out morphine reward memory retrieval and activation experiment. The effects of intra-AcbSh injection of BLF on morphine-induced CPP, reinstatement of CPP and locomotor activity were observed after environmental cues activating morphine reward memory. The results showed that intra-AcbSh injection of BLF (0.06 nmol/0.2 μL/side or 0.12 nmol/0.2 μL/side), rather than vehicle or BLF (0.01 nmol/0.2 μL/side), following morphine reward memory retrieval abolished morphine-induced CPP by disrupting its reconsolidation in mice. Moreover, this effect persisted for more than 14 days, which was not reversed by a morphine priming injection. Furthermore, intra-AcbSh injection of BLF without morphine reward memory retrieval had no effect on morphine-associated reward memory. Interestingly, administration of BLF into the AcbSh had no effect on the locomotor activity of mice during testing phase. Based on these results, we concluded that intra-AcbSh injection of BLF following morphine reward memory could erase morphine-induced CPP by disrupting its reconsolidation. Activating GABA receptor in AcbSh during drug memory reconsolidation may be a potential approach to prevent drug relapse.


Subject(s)
Animals , Male , Mice , Baclofen , Conditioning, Classical , GABA-B Receptor Agonists , Locomotion , Memory , Mice, Inbred C57BL , Morphine , Nucleus Accumbens , Opioid-Related Disorders , Reward
9.
The Korean Journal of Physiology and Pharmacology ; : 121-126, 2020.
Article in English | WPRIM | ID: wpr-787132

ABSTRACT

The ezrin-radixin-moesin (ERM) proteins are a family of membrane-associated proteins known to play roles in cell-shape determination as well as in signaling pathways. We have previously shown that amphetamine decreases phosphorylation levels of these proteins in the nucleus accumbens (NAcc), an important neuronal substrate mediating rewarding effects of drugs of abuse. In the present study, we further examined what molecular pathways may be involved in this process. By direct microinjection of LY294002, a PI3 kinase inhibitor, or of S9 peptide, a proposed GSK3β activator, into the NAcc core, we found that phosphorylation levels of ERM as well as of GSK3β in this site are simultaneously decreased. These results indicate that ERM proteins are under the regulation of Akt-GSK3β signaling pathway in the NAcc core. The present findings have a significant implication to a novel signal pathway possibly leading to structural plasticity in relation with drug addiction.


Subject(s)
Animals , Humans , Rats , Amphetamine , Glycogen Synthase Kinases , Membrane Proteins , Microinjections , Negotiating , Neurons , Nucleus Accumbens , Phosphorylation , Phosphotransferases , Plastics , Proto-Oncogene Proteins c-akt , Reward , Signal Transduction , Illicit Drugs , Substance-Related Disorders
10.
Journal of Southern Medical University ; (12): 609-615, 2020.
Article in Chinese | WPRIM | ID: wpr-828872

ABSTRACT

OBJECTIVE@#To investigate the potential neural pathway connecting the nucleus accumbens (NAc) and the rostral ventrolateral medulla (RVLM), and whether the pathway participates in the regulation of cardiovascular function in a model rat of anorexia nervosa (AN).@*METHODS@#Rat models of AN were established by allowing voluntary activity in a running wheel with restricted feeding, with the rats having free access to normal chow without exercise as the control group. FluoroGold (FG) retrograde tracing method and multi-channel simultaneous recording technique were used to explore the possible pathway between the NAc and the RVLM.@*RESULTS@#The rats in AN group exhibited significantly reduced systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) with significantly increased discharge frequency of RVLM neurons in comparison with the control rats. After the injection of FG into the RVLM, retrograde labeled neurons were observed in the NAc of the rats in both the normal control and AN groups. In both groups, SBP and HR were significantly decreased in response to 400 μA electrical stimulation of the NAc accompanied by an obvious increase in the discharge frequency of the RVLM neurons; the diastolic blood pressure (DBP) and MAP were significantly lower in AN model rats than in the normal rats in response to the stimulation.@*CONCLUSIONS@#We successfully established a rat model of AN via hyperactivity and restricted feeding and confirm the presence of a neural pathway connecting the NAc and the RVLM. This pathway might participate in the regulation of cardiovascular function in AN model rats.


Subject(s)
Animals , Rats , Anorexia Nervosa , Blood Pressure , Disease Models, Animal , Medulla Oblongata , Neural Pathways , Nucleus Accumbens , Rats, Sprague-Dawley
11.
Experimental Neurobiology ; : 387-396, 2018.
Article in English | WPRIM | ID: wpr-717413

ABSTRACT

The nucleus accumbens (NAc) is the major component of the ventral striatum that regulates stress-induced depression. The NAc receives dopaminergic inputs from the ventral tegmental area (VTA), and the role of VTA-NAc neurons in stress response has been recently characterized. The NAc also receives glutamatergic inputs from various forebrain structures including the prelimbic cortex (PL), basolateral amygdala (BLA), and ventral hippocampus (vHIP), whereas the role of those glutamatergic afferents in stress response remains underscored. In the present study, we investigated the extent to which descending glutamatergic neurons activated by stress in the PL, BLA, and vHIP project to the NAc. To specifically label the input neurons into the NAc, fluorescent-tagged cholera toxin subunit B (CTB), which can be used as a retrograde neuronal tracer, was injected into the NAc. After two weeks, the mice were placed under restraint for 1 h. Subsequent histological analyses indicated that CTB-positive cells were detected in 170~680 cells/mm² in the PL, BLA, and vHIP, and those CTB-positive cells were mostly glutamatergic. In the PL, BLA, and vHIP regions analyzed, stress-induced c-Fos expression was found in 20~100 cells/mm². Among the CTB-positive cells, 2.6% in the PL, 4.2% in the BLA, and 1.1% in the vHIP were co-labeled by c-Fos, whereas among c-Fos-positive cells, 7.7% in the PL, 19.8% in the BLA, and 8.5% in the vHIP were co-labeled with CTB. These results suggest that the NAc receives a significant but differing proportion of glutamatergic inputs from the PL, BLA, and vHIP in stress response.


Subject(s)
Animals , Mice , Basolateral Nuclear Complex , Cholera Toxin , Depression , Hippocampus , Neurons , Nucleus Accumbens , Prosencephalon , Ventral Striatum , Ventral Tegmental Area
12.
Dementia and Neurocognitive Disorders ; : 50-56, 2018.
Article in English | WPRIM | ID: wpr-714836

ABSTRACT

BACKGROUND AND PURPOSE: Apathy is one of the most common neuropsychiatric symptoms in patients with Alzheimer's disease (AD). It may have adverse impacts on the progression of AD. However, its neurobiological underpinnings remain unclear. The objective of this study was to investigate differences in regional cerebral blood flow (rCBF) between AD patients with apathy and those without apathy. METHODS: Sixty-six apathetic AD patients and 66 AD patients without apathy completed Neuropsychiatric Inventory (NPI) and underwent technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT) scans. Voxel-wise differences in rCBF between the 2 groups were examined. Association between rCBF and levels of apathy in the apathetic group was also assessed. RESULTS: AD patients with apathy showed lower rCBF in the bilateral orbitofrontal cortex, left putamen, left nucleus accumbens, left thalamus, and bilateral insula than those without (all p < 0.005). Mean perfusion across all significant clusters showed a negative linear correlation with NPI apathy score in AD patients with apathy (β = −0.25; p = 0.04). CONCLUSIONS: Hypoperfusion in the prefrontal, striatal, and insular areas may be neural correlates of apathy in AD patients.


Subject(s)
Humans , Alzheimer Disease , Apathy , Brain , Cerebrovascular Circulation , Nucleus Accumbens , Perfusion , Prefrontal Cortex , Putamen , Regional Blood Flow , Thalamus , Tomography, Emission-Computed , Tomography, Emission-Computed, Single-Photon
13.
Experimental Neurobiology ; : 120-128, 2018.
Article in English | WPRIM | ID: wpr-714114

ABSTRACT

µ-opioid receptor (MOR) is a class of opioid receptors with a high affinity for enkephalins and beta-endorphin. In hippocampus, activation of MOR is known to enhance the neuronal excitability of pyramidal neurons, which has been mainly attributed to a disinhibition of pyramidal neurons via activating Gαi subunit to suppress the presynaptic release of GABA in hippocampal interneurons. In contrast, the potential role of MOR in hippocampal astrocytes, the most abundant cell type in the brain, has remained unexplored. Here, we determine the cellular and subcellular distribution of MOR in different cell types of the hippocampus by utilizing MOR-mCherry mice and two different antibodies against MOR. Consistent with previous findings, we demonstrate that MOR expression in the CA1 pyramidal layer is co-localized with axon terminals from GABAergic inhibitory neurons but not with soma of pyramidal neurons. More importantly, we demonstrate that MOR is highly expressed in CA1 hippocampal astrocytes. The ultrastructural analysis further demonstrates that the astrocytic MOR is localized in soma and processes, but not in microdomains near synapses. Lastly, we demonstrate that astrocytes in ventral tegmental area and nucleus accumbens also express MOR. Our results provide the unprecedented evidence for the presence of MOR in astrocytes, implicating potential roles of astrocytic MOR in addictive behaviors.


Subject(s)
Animals , Mice , Antibodies , Astrocytes , Behavior, Addictive , beta-Endorphin , Brain , Carisoprodol , Enkephalins , gamma-Aminobutyric Acid , Hippocampus , Interneurons , Microscopy, Electron , Neurons , Nucleus Accumbens , Presynaptic Terminals , Pyramidal Cells , Receptors, Opioid , Synapses , Ventral Tegmental Area
14.
Experimental Neurobiology ; : 1-13, 2016.
Article in English | WPRIM | ID: wpr-169714

ABSTRACT

Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders characterized by a deficit in social behaviors and nonverbal interactions such as reduced eye contact, facial expression, and body gestures in the first 3 years of life. It is not a single disorder, and it is broadly considered to be a multi-factorial disorder resulting from genetic and non-genetic risk factors and their interaction. Genetic studies of ASD have identified mutations that interfere with typical neurodevelopment in utero through childhood. These complexes of genes have been involved in synaptogenesis and axon motility. Recent developments in neuroimaging studies have provided many important insights into the pathological changes that occur in the brain of patients with ASD in vivo. Especially, the role of amygdala, a major component of the limbic system and the affective loop of the cortico-striatothalamo-cortical circuit, in cognition and ASD has been proved in numerous neuropathological and neuroimaging studies. Besides the amygdala, the nucleus accumbens is also considered as the key structure which is related with the social reward response in ASD. Although educational and behavioral treatments have been the mainstay of the management of ASD, pharmacological and interventional treatments have also shown some benefit in subjects with ASD. Also, there have been reports about few patients who experienced improvement after deep brain stimulation, one of the interventional treatments. The key architecture of ASD development which could be a target for treatment is still an uncharted territory. Further work is needed to broaden the horizons on the understanding of ASD.


Subject(s)
Child , Humans , Amygdala , Autistic Disorder , Axons , Brain , Autism Spectrum Disorder , Cognition , Deep Brain Stimulation , Facial Expression , Gestures , Limbic System , Neurobiology , Neuroimaging , Nucleus Accumbens , Reward , Risk Factors , Social Behavior
15.
Journal of Korean Neuropsychiatric Association ; : 334-342, 2016.
Article in Korean | WPRIM | ID: wpr-56245

ABSTRACT

A growing body of evidence supports that Internet gaming disorder (IGD) is considered as ‘behavioral addiction’ with neurobiological alterations. We have reviewed previous research into the clinical and neurobiological features of IGD, and suggest a flowchart for the comprehensive evaluation of IGD. Several self-rating screening tests based on Diagnostic and Statistical Manual of Mental Disorder, 5th edition (DSM-5) IGD criteria were developed. IGD is often comorbid with depressive disorder, social anxiety disorder, attention deficit/hyperactivity disorder (ADHD), and smartphone addiction. Individuals with IGD are prone to act impulsively and make risky decisions, especially in response to game-related cues. Functional neuroimaging results have shown altered functional activities in prefrontal cortex, cingulate cortex, superior temporal gyrus and nucleus accumbens (NAc). Structural neuroimaging demonstrated gray matter volume changes in prefrontal cortex and NAc, while showing white matter integrity disruption in thalamus and posterior cingulate cortex. There are few evidences on the attribution of specific genes to IGD. To evaluate IGD comprehensively, self-rating scales based on DSM-5 are useful, but a diagnostic interview by a clinician is more helpful to assess functional impairments of IGD. Presence of psychiatric comorbidities such as depressive disorder, social anxiety disorder, ADHD, and smartphone addiction should be evaluated. Neurocognitive tests that assess impulsivity, decision-making under risk, and cue-reactivity are helpful when planning individualized IGD treatment.


Subject(s)
Anxiety Disorders , Comorbidity , Cues , Depressive Disorder , Functional Neuroimaging , Gray Matter , Gyrus Cinguli , Immunoglobulin D , Impulsive Behavior , Internet , Mass Screening , Mental Disorders , Neuroimaging , Nucleus Accumbens , Prefrontal Cortex , Smartphone , Software Design , Temporal Lobe , Thalamus , Weights and Measures , White Matter
16.
Experimental Neurobiology ; : 307-317, 2016.
Article in English | WPRIM | ID: wpr-172189

ABSTRACT

Chronic stress induces changes in neuronal functions in specific brain regions regulating sociability and mood-related behaviors. Recently we reported that stress-induced persistent upregulation of the neuropeptides orexin and melanin-concentrating hormone (MCH) in the basolateral amygdala (BLA) and the resulting activation of orexin receptors or MCH receptors within the BLA produced deficits in sociability and mood-related behaviors. In the present study, we investigated the neural targets that were innervated by BLA neurons containing orexin receptors or MCH receptors. The viral vector system AAV2-CaMKII-ChR2-eYFP was injected into the BLA to trace the axonal tracts of BLA neurons. This axon labeling analysis led us to identify the prelimbic and infralimbic cortices, nucleus accumbens (NAc), dorsal striatum, paraventricular nucleus (PVN), interstitial nucleus of the posterior limb of the anterior commissure, habenula, CA3 pyramidal neurons, central amygdala, and ventral hippocampus as the neuroanatomical sites receiving synaptic inputs of BLA neurons. Focusing on these regions, we then carried out stimulus-dependent c-Fos induction analysis after activating orexin receptors or MCH receptors of BLA neurons. Stereotaxic injection of an orexin receptor agonist or an MCH receptor agonist in the BLA induced c-Fos expression in the NAc, PVN, central amygdala, ventral hippocampus, lateral habenula and lateral hypothalamus, which are all potentially important for depression-related behaviors. Among these neural correlates, the NAc, PVN and central amygdala were strongly activated by stimulation of orexin receptors or MCH receptors in the BLA, whereas other BLA targets were differentially and weakly activated. These results identify a functional connectivity of BLA neurons regulated by orexin and MCH receptor systems in sociability and mood-related behaviors.


Subject(s)
Axons , Basolateral Nuclear Complex , Brain , Central Amygdaloid Nucleus , Depression , Extremities , Habenula , Hippocampus , Hypothalamic Area, Lateral , Neurons , Neuropeptides , Nucleus Accumbens , Orexin Receptors , Paraventricular Hypothalamic Nucleus , Pyramidal Cells , Up-Regulation
18.
Arq. neuropsiquiatr ; 73(2): 132-139, 02/2015. graf
Article in English | LILACS | ID: lil-741181

ABSTRACT

The effects of tamoxifen (TAM) on anxiety and depression-like behavior in ovariectomized (OVX) and naïve female rats were investigated. The animals were divided into Sham-TAM, OVX-TAM, Sham and OVX groups. Tamoxifen (1 mg/kg) was administered for 4 weeks. In the forced swimming test, the immobility times in the OVX and Sham-TAM groups were higher than in the Sham group. In the open field, the numbers of central crossings in the OVX and Sham-TAM groups were lower than the number in the Sham group, and the number of peripheral crossings in the OVX group was lower than the number in the Sham group. In the elevated plus maze, the numbers of entries to the open arm among the animals in the Sham-TAM and OVX groups were lower than the number in the Sham group, while the number of entries to the open arm in the OVX-TAM group was higher than the number in the OVX group. It was shown that deletion of ovarian hormones induced anxiety and depression-like behavior. Administration of tamoxifen in naïve rats led to anxiety and depression-like behavior that was comparable with the effects of ovarian hormone deletion. It can be suggested that tamoxifen antagonizes the effects of ovarian hormones. It also seems that tamoxifen has anxiolytic effects on ovariectomized rats.


Foram investigados os efeitos do tamoxifeno (TAM) no comportamento semelhante a ansiedade de depressão de ratas ooforectomizadas (OVX) e controles. Os animais foram divididos em Sham-TAM, OVX-TAM, Sham e OVX groups. Tamoxifeno (1 mg/kg) foi administrado por quatro semanas. No teste de natação forçada, os tempos de imobilidade nos grupos OVX e Sham-TAM foram maiores que aqueles do grupo Sham. No campo aberto, os números de cruzamento no centro nos grupos OVX e Sham-TAM foram menores que aquele do grupo Sham, e o número dos cruzamentos na periferia no grupo OVX foi menor que o número no grupo Sham. No labirinto elevado, os números de entradas com braços abertos entre os animais nos grupos Sham-TAM e OVX foram menores do que aqueles do grupo Sham, enquanto o número de entradas com os braços abertos no grupo OVX-TAM foi maior que aquele no grupo OVX. Foi observado que a deleção dos hormônios ovarianos induziu comportamento similar a ansiedade e depressão. A administração de tamoxifeno em ratos controle induziu a um comportamento que era comparável aos efeitos da deleção do hormônio ovariano. Pode ser sugerido que o tamoxifeno antagoniza os efeitos dos hormônios ovarianos. Parece também que o tamoxifeno tem efeito ansiolítico nas ratas ooforectomizadas.


Subject(s)
Animals , Male , Rats , Cocaine/pharmacology , Cyclin-Dependent Kinases/metabolism , Dendrites/drug effects , Dendrites/metabolism , Dopamine Uptake Inhibitors/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/enzymology , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Microscopy, Confocal , Neurons/drug effects , Neurons/metabolism , Purines/pharmacology , Rats, Sprague-Dawley
19.
Chinese Journal of Applied Physiology ; (6): 49-53, 2015.
Article in Chinese | WPRIM | ID: wpr-243435

ABSTRACT

<p><b>OBJECTIVE</b>To analyse the relationship between the electrical activity changes of nucleus accumbens (NAc) shell and the drug-seeking behavior by recording NAc shell electrical activity in conditioned place preference (CPP) rats induced by morphine.</p><p><b>METHODS</b>Forty SD rats were randomly divided into operation-only control group and the morphine-induced CPP group after stereotaxic electrode was buried on rats NAc shell and the latter group was used to establish the morphine CPP model(n = 20). A CPP video system combining with the technique of electrical activity wireless telemetry was used in the study. The NAc electrical activity from each group of rats was recorded by wireless telemetry respectively, which included staying in black or white chamber of video box, shuttling between black-white chambers and between white-black chambers. The electrical activity differences were analyzed by the percentage of each wave.</p><p><b>RESULTS</b>When the morphine-induced rats staying in black chamber, compared with the operation-only control group, the NAc shell electrical activity showed that the percentage of 0 - 10 Hz was increased(P < 0.05), meanwhile, those of 10 - 20 Hz and 30 - 40 Hz were reduced(P < 0.05, P < 0.01); when the morphine-induced rats staying in white chamber, the NAc shell electrical activity showed that the percentage of 0 - 10 Hz and 30 - 40 Hz were increased(P < 0.05 , P < 0.01) , that of 10 - 20 Hz was reduced(P < 0.05 , P < 0. 01); when the morphine-induced rats in black- white shuttling status, the NAc shell electrical activity showed that the percentage of 0 - 10 Hz was increased(P <0.05, P <0.01), that of 10- 30 Hz was reduced( P <0.05); and in the white-black shuttling status, the electrical activity showed that the percentage of 0 - 10 Hz was reduced(P <0.05), that of 10 - 30 Hz was increased(P < 0.05) ; the electrical activity was further compared between staying status and shuttling status in the morphine-induced CPP group. There was no significant difference of electrical activity between the rats in white-black shuttling status and staying in white chamber. However, when rats in black-white shuttling status, compared with staying in black chamber, the electrical activity showed that the percentage of 0 - 10 Hz and 40 - 50 Hz were increased(P < 0.05), meanwhile, those of 10 - 20 Hz and 30 - 40 Hz were reduced(P <0.05).</p><p><b>CONCLUSION</b>The electrical activity changes of NAc shell in morphine-induced CPP rats were different from those of the operation-only control group, and these changes might be associated to the rat's drug-seeking behavior.</p>


Subject(s)
Animals , Rats , Conditioning, Psychological , Drug-Seeking Behavior , Morphine , Pharmacology , Nucleus Accumbens , Physiology , Rats, Sprague-Dawley , Telemetry
20.
The Korean Journal of Physiology and Pharmacology ; : 89-97, 2015.
Article in English | WPRIM | ID: wpr-727821

ABSTRACT

The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the 3rd day. CART peptides were over-expressed on the 5th day in the striata of behaviorally sensitized mice. A higher proportion of CART+ cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both D1R and D2R antagonists, SCH 23390 (D1R selective) and raclopride (D2R selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both D1R and D2R knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the D1R-KO mice, but not in the D2R-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by D1R.


Subject(s)
Animals , Mice , Adenosine , Cocaine , Motor Activity , Nucleus Accumbens , Peptides , Phosphotransferases , Putamen , Raclopride , Receptors, Dopamine , RNA, Messenger , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL